Email Spoofing Detection Tool – Header Forensics + Domain Auth + ML
Stop forged senders and phishing. This Python tool validates SPF/DKIM/DMARC, inspects email headers, and classifies messages using machine learning. Run as a Flask web app or standalone CLI.
- ✓Legitimate / Suspicious / Spoofed decision with reasons
- ✓DNS lookups for SPF, DKIM, DMARC + header chain analysis
- ✓NLP & ML anomaly detection (optional training)
1. Introduction
The Email Spoofing Detection Tool is a Python-based cybersecurity project designed to detect and prevent email spoofing attacks. Attackers forge the sender’s address to impersonate trusted sources. This tool analyses headers, validates domain authentication (SPF, DKIM, DMARC), and inspects message content to flag spoofed or suspicious emails. A blend of rule-based checks and ML helps protect users and organizations from fraud and data loss.
2. Existing System vs Proposed System
- Traditional spam filters miss advanced spoofing.
- No robust SPF/DKIM/DMARC validation.
- Weak detection of forged headers / fake From.
- DNS-based SPF, DKIM, DMARC checks.
- Parses Received, Return-Path, Message-ID.
- ML for behavior/content anomalies.
- Clear report: Legitimate / Suspicious / Spoofed.
- Standalone Flask app or gateway integration.
3. Working
- Email Input: Upload
.emlor paste headers. - Header Analysis: Extract sender IP, Return-Path, Message-ID, auth results.
- Domain Verification: Perform SPF/DKIM/DMARC via DNS.
- Content Analysis (optional): NLP for phishing cues and mismatched URLs.
- Classification: ML/heuristics produce Legitimate / Spoofed.
- Result Display: Detailed reasons + trust score.
4. Technology Stack
- Language: Python
- Libraries:
email,dns.resolver,scikit-learn,pandas,re,tkinter/flask - Algorithms: Random Forest / Naïve Bayes
- Protocols: SPF, DKIM, DMARC validation
- Backend: SQLite3 (logs & reports)
- Interface: CLI or Flask Web UI
5. Modules
Extract sender, subject, metadata.
- Header normalization
- Attachment-safe parsing
SPF/DKIM/DMARC via DNS.
- SPF IP match
- DKIM signature verify
- DMARC policy
Behavior & content anomalies.
- Train/evaluate
- Threshold tuning
Phishing phrases & URLs.
- NLP scoring
- URL mismatch checks
Human-readable output.
- Decision + reasons
- Recommendations
Flask UI or Tkinter.
- Upload
.eml/headers - View logs & scores
6. Advantages
- Accurate detection using header + domain auth.
- Prevents phishing/data theft with validated senders.
- Lightweight, fast, deployable anywhere.
- ML improves accuracy over time.
- Easy enterprise integration for automated protection.
7. Applications
- Corporate/government email security.
- ESPs to harden anti-phishing pipelines.
- Cybersecurity training & awareness labs.
- Forensic analysis for incident response.
Python Integration Sketch (Flask + ML)
# 1) Ingest & Parse
from email import policy
from email.parser import BytesParser
def parse_eml(fp):
msg = BytesParser(policy=policy.default).parse(fp)
headers = dict(msg.items())
body = msg.get_body(preferencelist=('plain','html'))
return headers, (body.get_content().strip() if body else "")
# 2) SPF/DKIM/DMARC
import dns.resolver
def check_spf(ip, domain): ...
def check_dkim(headers, raw): ...
def check_dmarc(domain): ...
# 3) Heuristics + ML
from sklearn.ensemble import RandomForestClassifier
def extract_features(headers, text): ...
def classify(features): # Legit / Suspicious / Spoofed + score
return label, score, reasons
# 4) Flask UI
from flask import Flask, request, render_template
app = Flask(__name__)
@app.route('/scan', methods=['POST'])
def scan():
eml = request.files['eml'].read()
headers, text = parse_eml(io.BytesIO(eml))
spf = check_spf(...)
dkim = check_dkim(headers, eml)
dmarc = check_dmarc(...)
feats = extract_features(headers, text)
label, score, reasons = classify(feats)
log_to_sqlite(headers, label, score, reasons)
return render_template('report.html', label=label, score=score, reasons=reasons, spf=spf, dkim=dkim, dmarc=dmarc)
# 5) SQLite logging & exportable reports
What You Get
| Item | Included | Notes |
|---|---|---|
| Python Source Code | ✅ | Flask UI + CLI; modular design |
| SPF/DKIM/DMARC Validators | ✅ | DNS lookups + signature checks |
| ML Pipeline | ✅ | RF/NB baseline + feature extractors |
| SQLite Logging & Reports | ✅ | Decision, score, reasons |
| Demo Video | ✅ | Setup & working walkthrough |
| Report & PPT | ✅ | College-format templates |
| Support | ✅ | Installation + viva Q&A (1 month) |
FAQs — Email Spoofing Detection Tool
Need a practical cybersecurity project?
Get the Email Spoofing Detection Tool with code, demo, docs, and support.
WhatsApp Us Now
